In [8]:
print("""
Jane St Puzzle
Oct 2024 - Knight Moves 6
141 Million Valid, Optimal Solutions
By Kauri Beckmann and Dominik Tatakis
kauri.b@outlook.co.nz
### Dom do you want me to publish your email?
12/10/2024
""")
"""
We use a recursive depth-first search approach to solving Knight Moves 6.
Search depth Program runtime Valid, optimal solutions found
13 15 sec 0
15 60 sec 581,790
17 15 min 11,143,958
19 100 min 141,617,662
21 I'm running this on a 2016 Surface Pro that lags if you try to load YouTube or something, so...
"""
Jane St Puzzle Oct 2024 - Knight Moves 6 141 Million Valid, Optimal Solutions By Kauri Beckmann and Dominik Tatakis kauri.b@outlook.co.nz ### Dom do you want me to publish your email? 12/10/2024
Out[8]:
"\nWe use a recursive depth-first search approach to solving Knight Moves 6.\n\n Search depth Program runtime Valid, optimal solutions found\n 13 15 sec 0\n 15 60 sec 581,790\n 17 15 min 11,143,958\n 19 100 min 141,617,662\n 21 I'm running this on a 2016 Surface Pro that lags if you try to load YouTube or something, so...\n"
In [ ]:
# STAGE 1
# Use a recursive DFS to find all possible paths from one corner to the other, up to a certain path length (ie search depth)
# Store these possible paths as lists of coordinates
grid_size = 6
global i
i = 0
max_path_length = 17 # Defines search depth. Our realistic computational limit maxed at 19.
print("Stage 1 paths")
print("Checking pathways of up to " + str(max_path_length) + "moves")
print("Grid size = " + str(grid_size))
# Define how the knight moves
knight_moves = [
(2, 1), (2, -1), (-2, 1), (-2, -1), # 2 squares horizontal, 1 square vertical
(1, 2), (1, -2), (-1, 2), (-1, -2) # 2 squares vertical, 1 square horizontal
]
# Function to check if a position is valid (within bounds and not visited)
def is_valid_position(row, col, visited):
return 0 <= row < grid_size and 0 <= col < grid_size and (row, col) not in visited
# DFS function to explore all paths from start to end
def dfs(current_position, visited, path, all_paths_set):
global i
# Base case: If we reach f6 (position (5, 5)) and path length <= max_path_length, add the current path to all_paths_set
if current_position == (grid_size - 1, grid_size - 1) and len(path) <= max_path_length:
# Convert path list to a tuple of tuples and add to list of valid paths
all_paths_set.add(tuple(path))
# Stop exploring further if the current path exceeds the maximum allowed length
if len(path) > max_path_length:
return False
# Explore all possible knight move directions
for direction in knight_moves:
new_row, new_col = current_position[0] + direction[0], current_position[1] + direction[1]
i += 1
# Check if our move has placed us in a valid position
if is_valid_position(new_row, new_col, visited):
# Mark the new position as visited and add it to the current path
visited.add((new_row, new_col))
path.append((new_row, new_col))
# Recursively explore from the new position
if dfs((new_row, new_col), visited, path, all_paths_set):
return True # Stop further recursion if the limit is reached
# Backtrack: remove the position from the path and visited set
path.pop()
visited.remove((new_row, new_col))
return False # Continue recursion if the limit isn't reached yet
# Initialize DFS from a1 (position (0, 0)) to f6 (position (5, 5))
start = (0, 0) # Starting position a1
visited = set([start]) # Keep track of visited cells
all_paths_set = set() # Store all unique valid paths (as tuples)
# Start the DFS search
dfs(start, visited, [start], all_paths_set)
# Convert set of paths back to list (optional, for ease of use)
all_paths = list(all_paths_set)
# Print the number of paths found
print(f"Total number of iterations: {i}")
print(f"Total number of unique valid paths from a6 to f1 using knight moves: {len(all_paths)}")
Stage 1 paths Checking pathways of up to 17moves Grid size = 6 Total number of iterations: 929509096 Total number of unique valid paths from a6 to f1 using knight moves: 4230930
In [5]:
# Stage 2:
# Find all possible paths for the a1 knight
# Create a grid defining positions of A, B, C
# For each path found in Stage 1,, iterate through values for A B and C
# Define the maximum sum for A, B, and C
# Since we are seeking to minimise A+B+C, set max_sum A+B+C to minimum possible, ie 6.
import pandas as pd
max_sum = 6
search_number = 2024
#print(f"Searching for total of {search_number}")
# List to store results for each set of coordinates
s2_results = []
s2_count = 0
# Iterate through each line of coordinates
for index, coordinates in enumerate(all_paths):
results = []
# Iterate over all possible values of A, B, and C
for A in range(1, max_sum + 1):
for B in range(1, max_sum + 1):
if B == A:
continue
for C in range(1, max_sum + 1):
if C in (A, B) or A + B + C > max_sum:
continue
# Create the 6x6 grid
grid = [
[A, B, B, C, C, C],
[A, B, B, C, C, C],
[A, A, B, B, C, C],
[A, A, B, B, C, C],
[A, A, A, B, B, C],
[A, A, A, B, B, C],
]
# Initialize x and u for the current A, B, C
# x is the starting score
x = A
# u is the current position
u = A
# Logic to calculate the move score, depending whether the move lands on the same or different square.
# Loop through the coordinates
for i, (row, col) in enumerate(coordinates):
if i == 0: # Skip the first coordinate
continue
# v is the position we are moving to
# Get the grid value at (row, col)
v = grid[row][col]
# Apply the formula based on u and v
if u == v:
x += v # If u equals v, add v to x
else:
x *= v # If u does not equal v, multiply x by v
# Update u to the current v for the next movement
u = v
# Store results if x equals search_number
if x == search_number:
results = [A, B, C]
# print(results)
# print(coordinates)
# print("Grid:")
# for row in grid:
# print(" | ".join(f"{value:2}" for value in row))
# print("\n") # Add an extra newline for spacing
s2_count = s2_count + 1
s2_results.append({
'number' : s2_count,
'coordinates': coordinates,
'results': results
})
print("Stage 2")
print(f"Number of possible paths for one the a6 knight: ", str(s2_count))
df2 = pd.DataFrame(s2_results)
print("For possible ABC values, Number of optimal pathways a6 to f1")
print("a6 knight")
print(df2['results'].value_counts())
Stage 2 Number of possible paths for one the a6 knight: 4576 For possible ABC values, Number of optimal pathways a6 to f1 a6 knight results [1, 3, 2] 1685 [3, 2, 1] 1417 [3, 1, 2] 878 [2, 3, 1] 596 Name: count, dtype: int64
In [6]:
# Stage 3
# Almost the same as stage 2...
# But consider our pathways are valid from a6 to f1.
# So, we'll simply rotate our search grid 90 degrees, and we can apply the same pathways as before.
# List to store results for each set of coordinates
s3_results = []
s3_count = 0
# Iterate through each line of coordinates
for index, coordinates in enumerate(all_paths):
results = []
# Iterate over all possible values of A, B, and C
for A in range(1, max_sum + 1):
for B in range(1, max_sum + 1):
if B == A:
continue
for C in range(1, max_sum + 1):
if C in (A, B) or A + B + C > max_sum:
continue
# Create the 6x6 grid
grid2 = [
[A, A, A, A, A, A],
[A, A, A, A, B, B],
[A, A, B, B, B, B],
[B, B, B, B, C, C],
[B, B, C, C, C, C],
[C, C, C, C, C, C],
]
# Initialize x and u for the current A, B, C
# x is the starting score
x = A
# u is the current position
u = A
# Loop through the coordinates
for i, (row, col) in enumerate(coordinates):
if i == 0: # Skip the first coordinate
continue
# v is the position we are moving to
# Get the grid value at (row, col)
v = grid2[row][col]
# Apply the formula based on u and v
if u == v:
x += v # If u equals v, add v to x
else:
x *= v # If u does not equal v, multiply x by v
# Update u to the current v for the next movement
u = v
# Store results if x equals search_number
if x == search_number:
results = [A, B, C]
# print(results)
# print(coordinates)
# print("Grid:")
# for row in grid:
# print(" | ".join(f"{value:2}" for value in row))
# print("\n") # Add an extra newline for spacing
s3_count = s3_count + 1
s3_results.append({
'number' : s3_count,
'coordinates': coordinates,
'results': results
})
print("Stage 3")
print(f"Total number of possible paths for one the a1 knight: ", str(s3_count))
df3 = pd.DataFrame(s3_results)
print("For possible ABC values, Number of optimal pathways a1 to f6")
print(df3['results'].value_counts())
Stage 3 Total number of possible paths for one the a1 knight: 8367 For possible ABC values, Number of optimal pathways a1 to f6 results [1, 3, 2] 3834 [2, 3, 1] 1936 [3, 1, 2] 1392 [3, 2, 1] 1205 Name: count, dtype: int64
In [7]:
# Stage 4
# Calculate our total number of solutions
# Any [1,3,2] a6 can match any other [1,3,2] a1 pathway.
# Therefore just multiple these values together to get the total number of solutions found.
df2['results'] = df2['results'].apply(tuple)
value_counts = df2['results'].value_counts()
df3['results'] = df3['results'].apply(tuple)
# Yes, this is stupid and dumb and manual. I should have used a loop. It works, alright!?
ABC132 = df2['results'].value_counts().get((1, 3, 2), 0) * df3['results'].value_counts().get((1, 3, 2), 0)
ABC231 = df2['results'].value_counts().get((2, 3, 1), 0) * df3['results'].value_counts().get((2, 3, 1), 0)
ABC312 = df2['results'].value_counts().get((3, 1, 2), 0) * df3['results'].value_counts().get((3, 1, 2), 0)
ABC321 = df2['results'].value_counts().get((3, 2, 1), 0) * df3['results'].value_counts().get((3, 2, 1), 0)
ABC123 = df2['results'].value_counts().get((1, 2, 3), 0) * df3['results'].value_counts().get((1, 2, 3), 0)
ABC213 = df2['results'].value_counts().get((2, 1, 3), 0) * df3['results'].value_counts().get((2, 1, 3), 0)
total_solutions = ABC132 + ABC231 + ABC312 + ABC321 + ABC123 + ABC213
print("Stage 4")
print("")
print("[A B C] number of solutions")
print(f"[1 3 2]", ABC132)
print(f"[2 3 1]", ABC231)
print(f"[3 1 2]", ABC312)
print(f"[3 2 1]", ABC321)
print(f"[1 2 3]", ABC123)
print(f"[2 1 3]", ABC213)
print(f"[A B C]", total_solutions, "total solutions")
Stage 4 [A B C] number of solutions [1 3 2] 6460290 [2 3 1] 1153856 [3 1 2] 1222176 [3 2 1] 1707485 [1 2 3] 0 [2 1 3] 0 [A B C] 10543807 total solutions
In [14]:
# Stage 5
# Pull up some valid solution to be submitted.
print("Stage 5")
print("Example pathway for a6 knight:")
a6_sol = 150 # Picks which solution
coordinates_2 = s2_results[a6_sol]['coordinates']
grid_labels_2 = [
['a6', 'b6', 'c6', 'd6', 'e6', 'f6'],
['a5', 'b5', 'c5', 'd5', 'e5', 'f5'],
['a4', 'b4', 'c4', 'd4', 'e4', 'f4'],
['a3', 'b3', 'c3', 'd3', 'e3', 'f3'],
['a2', 'b2', 'c2', 'd2', 'e2', 'f2'],
['a1', 'b1', 'c1', 'd1', 'e1', 'f1']
]
# s2_results[0]['coordinates'] = ((0, 0),
# Create a string that combines the grid labels
combined_labels_2 = ','.join(grid_labels_2[x][y] for x, y in coordinates_2)
print(coordinates_2)
# Print the result
ABC_a6 = s2_results[a6_sol]['results']
print(ABC_a6)
print(combined_labels_2)
Stage 5 Example pathway for a6 knight: ((0, 0), (2, 1), (3, 3), (5, 4), (3, 5), (2, 3), (1, 5), (0, 3), (2, 4), (4, 3), (5, 1), (3, 0), (2, 2), (3, 4), (5, 5)) [1, 3, 2] a6,b4,d3,e1,f3,d4,f5,d6,e4,d2,b1,a3,c4,e3,f1
In [15]:
print("Example pathway for a1 knight:")
a1_sol = 1122 # Picks which solution
coordinates_3 = s3_results[a1_sol]['coordinates']
#As before, a1 knight works on a rotated grid
grid_labels_3 =[
['a1', 'a2', 'a3', 'a4', 'a5', 'a6'],
['b1', 'b2', 'b3', 'b4', 'b5', 'b6'],
['c1', 'c2', 'c3', 'c4', 'c5', 'c6'],
['d1', 'd2', 'd3', 'd4', 'd5', 'd6'],
['e1', 'e2', 'e3', 'e4', 'e5', 'e6'],
['f1', 'f2', 'f3', 'f4', 'f5', 'f6']
]
# Create a string that combines the grid labels
combined_labels_3 = ','.join(grid_labels_3[x][y] for x, y in coordinates_3)
print(coordinates)
# Print the result
ABC_a1 = s3_results[a1_sol]['results']
print(ABC_a1)
print(combined_labels_3)
Example pathway for a1 knight: ((0, 0), (1, 2), (2, 4), (3, 2), (5, 1), (4, 3), (3, 1), (2, 3), (3, 5), (5, 4), (3, 3), (2, 1), (4, 2), (3, 4), (5, 5)) [1, 3, 2] a1,b3,d2,f1,e3,f5,d6,b5,a3,c2,b4,d3,f4,e2,c3,e4,f6
In [16]:
if ABC_a6 == ABC_a1:
print("Example valid answer:")
ABC_string = ','.join(map(str, ABC_a1))
print(ABC_string + "," + combined_labels_3 + "," + combined_labels_2)
else:
print("Error: ABC values are different for a6 and a1")
Example valid answer: 1,3,2,a1,b3,d2,f1,e3,f5,d6,b5,a3,c2,b4,d3,f4,e2,c3,e4,f6,a6,b4,d3,e1,f3,d4,f5,d6,e4,d2,b1,a3,c4,e3,f1